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Abstract

In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete

model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic

response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces

and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the

nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It

presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the

wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes.

At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear

dynamics and surface wear.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic behavior of gear systems has attracted many investigators for two primary reasons. One reason is
the fatigue life of the gear pair. Dynamic gear tooth forces are typically larger than the corresponding quasi-
static forces, resulting in larger dynamic stresses and shorter bending and contact fatigue lives. The second
primary reason for dynamic modeling is gear noise. Time-varying dynamic gear mesh and bearing forces are
transmitted to surrounding structures through the housing and the mounts to cause gear whine noise.
Therefore, large vibration amplitudes typically result in higher noise levels as well.

While gear durability and noise are the most obvious concerns requiring a better understanding of dynamic
behavior of a gear train, there are a host of other failure modes or functional behavior that are influenced by
gear dynamics as well. Among them, surface wear of gears seems to be the most interesting and challenging
one, since the influences are in both directions. The dynamic behavior of the gears amounts to tooth forces
that are different from the quasi-static forces in both magnitude and shape. These tooth forces also reflect
various nonlinear phenomena such as backlash-induced tooth separations, jump discontinuities, and sub-
harmonic parametric resonances. Therefore, surface wear outcome is strongly related to the contact stresses
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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and the dynamic behavior. In addition, like the dynamic response amplitudes, wear behavior should also vary
with speed as well. On the other hand, dynamic response of a gear pair is very sensitive to deviations of the
tooth surface profiles from a perfect involute. Intentional tooth modifications such as tip and root relieves are
commonly used to reduce the dynamic forces at a certain design torque. Unavoidable manufacturing errors
also influence the dynamic response since they act as a ‘‘transmission error’’ excitation at the gear mesh
interface. Surface wear is a material removal process that results in a deviation from the intended tooth
profiles. Therefore, a gear pair with worn surfaces should have dynamic behavior that is quite different from a
gear pair with no wear. This indicates that gear dynamics and gear wear are mutually dependent on each
other.

In this study, this apparent link between the dynamic behavior of a spur gear pair and tooth surface wear
will be studied. Dynamic models of varying complexity and a quasi-static wear model will be proposed.
A dynamic wear prediction methodology will be developed to describe the impact of dynamics on surface wear
as well as the impact of wear on gear pair dynamics.

1.1. Literature survey

A large number of published theoretical and experimental spur gear dynamics studies focused on either
noise or durability. Most of these studies proposed discrete models to predict the parameters that might be
related to the gear noise levels (e.g. Refs. [1–4]). In line with the experimental studies on spur gear dynamics
[4–8], these nonlinear time-varying models used discrete gear mesh interface formulations that include periodic
mesh stiffness and gear backlash-induced tooth separations. In addition, an external displacement excitation
was included in some of these models to represent gear profile errors and intentional tooth modifications. Both
the mesh stiffness function and the displacement excitation would be determined by using a static-elastic gear
contact (load distribution) model. One commonly used output from these models was the dynamic
transmission error (DTE) that is defined as

DTE ¼ rpypðtÞ þ rgygðtÞ. (1)

It represents the motion transmission error along the line of action of gears where rp and rg are the base radii
of gears 1 and 2, and yp and yg are the angular displacements. This is the dynamic equivalent of the better-
known static transmission error (STE).

Tooth bending and contact fatigue-related failure modes of spur gear pairs can be improved through better
design practices, materials, and lubricants. Gears that are optimized for these failure modes often exhibit
surface wear since they operate longer life cycles. Besides the direct material loss that leads to functional
failure and potentially higher gear noise levels, surface wear can also affect the patterns of gear contact. This
might alter stresses and load distribution to accelerate the occurrence of other failure modes [9].

Sliding wear of a lubricated surface can be described by the initial value problem [10]

dh

ds
¼ F ðP; u; . . .Þ, (2)

where h is the wear depth, s is the relative sliding distance and F is a function of a number of parameters
influencing wear including contact pressure P, sliding velocity u, hardness, surface roughness, and lubricant-
related parameters. Wear accumulation can be calculated by integrating Eq. (2), provided that the function F

is known. Archard [10] proposed a simple model that takes probability of asperity collision into account in the
form of a wear coefficient k. Although more advanced wear models were also proposed using different
methodologies and parameter sets, Archard’s wear model still remains the most commonly used model for
practical applications.

There are a few studies on prediction of spur gear wear under quasi-static conditions. Flodin and Andersson
[11] calculated the sliding distance from involute profile geometry. They determined the load carried by each
tooth pair in the mesh and calculated contact pressures using a simplified Winkler’s mattress model where a
surface represented by independent springs carrying the load. The values of contact pressure and sliding
distance were then combined in Archard’s wear model to determine the wear profile in involute direction. The
contact pressure calculations were repeated incrementally to account for the changes in pressure due to wear
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of the contacting surfaces. They did not include the influence of intentional tooth surface modifications, tooth
profile errors and tooth deflections in their models. They also did not provide any experimental validation.
The gear wear model of Bajpai et al. [12] addressed some of these open issues. Their wear prediction
methodology included both intentional surface modifications and manufacturing/assembly-related imperfec-
tions. They also performed a number of tightly controlled gear wear experiments under quasi-static conditions
to validate their wear model. Yuksel and Kahraman [13] applied a similar wear model to a deformable-body
dynamic model of a planetary gear set to demonstrate the influence of representative tooth wear profiles on
planetary gear set dynamics.

1.2. Objectives and scope

Currently, very little is known of wear behavior of gears under dynamic conditions. The wear models cited
above were strictly static as they relied on the load distribution and tooth forces predicted under quasi-static
conditions. On the other hand, dynamic models cited were not equipped to consider the influence of a worn
gear tooth surface on dynamic response. This paper, therefore, focuses in bridging this gap between the
dynamics and wear models. A pair of dynamic models and a static gear wear model developed earlier will be
introduced and modified to arrive at a dynamic gear wear model. Technical challenges in achieving this goal
will be presented together with potential strategies in eliminating them. Numerical results on an example spur
gear pair will be presented to demonstrate wear-dynamics interactions and related future research topics will
be outlined.

2. Gear pair dynamic model

In this study, the spur gear dynamic models of Tamminana et al. [14] will be adapted. The first one of these
models is a finite elements (FE)-based deformable body model that was developed by using a special-purpose
contact analysis software [15]. The model divides the gear into a near-field region near the contact, and a far-
field region away from the contact. The FE method is used to compute relative deformations and stresses for
points in the far field, and a semi-analytical deformation model based on the Bousinesq and Cerruti solutions
is used in the near field within the contact zones. This approach does not require a highly refined mesh at the
contacting tooth surfaces, reducing the computational effort compared to conventional FE models which
require a refined mesh at the gear tooth region, limiting the model to static analysis only. Therefore, the model
used here allows a more refined and comprehensive study of spur gear dynamics using a truly deformable-
body formulation. The tooth surfaces are modeled by a large number of nodes representing the involute shape
and surface modifications. The model makes it unnecessary to locally refine the FE mesh near the contact, and
re-mesh the finite elements for each contact position. A reference frame is attached to the pinion and gear, and
the finite element computations are done for each of them separately. The mesh stiffness and mesh contact
forces, comprising the dynamic excitation for the system, are evaluated internally at each time step [15].
Contact conditions are handled as linear inequality constraints whose solution is obtained by a revised
Simplex solver. Contact analysis determines the contact conditions between the pinion and gear at each time
step. Both rigid body motions and the FE displacement vector are considered for each gear to satisfy the linear
system of differential equations [15] with Rayleigh’s damping model. The deformable-body model employs a
time-discretization scheme based on Newmark method. We refer to Tamminana et al. [14] for a detailed
description of the application of the contact model to a spur gear pair dynamics problem.

The deformable-body model, while accurate and detailed, is computationally demanding. Since the dynamic
wear simulations will require a large number of real-time analyses, the second dynamic model seeks a more
computationally efficient alternative to the deformable-body model. This discrete nonlinear, time-varying
model shown in Fig. 1 consists of two rigid wheels of polar mass moments of inertia of Ip and Ig, and base radii
of rp and rg. A periodically time-varying mesh stiffness function k(t) that represents the parametric excitation
due to the mesh stiffness variation caused by the fluctuation of number of tooth pairs in contact zone and a
viscous damper c connect the two gear wheels along the line of action. A backlash function g is included to
represent the gear backlash of magnitude 2b and an external displacement excitation e(t) is also applied at the
gear mesh interface to represent manufacturing errors, intentional modifications of the tooth profile or a wear
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Fig. 1. Discrete dynamic model of a spur gear pair (from Ref. [14]).
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profile. Given F ¼ me(Tprp/Ip+ Tgrg/Ig) and me ¼ IpIg=ðIpr2g þ Igr2pÞ, the governing equation of motion of the
single-degree-of-freedom dynamic model is given for a coordinate x(t) ¼ rpyp(t)+rgyg(t)�e(t) as [14]

me €xþ c _xþ kðtÞg½xðtÞ� ¼ F �me €eðtÞ, (3a)

g½xðtÞ� ¼

xðtÞ � b; xðtÞ4b;

0; jxðtÞjpb;

xðtÞ þ b; xðtÞo� b;

8><
>: (3b)

where an overdot denotes differentiation with respect to time t, and Tp and Tg are constant torque values
applied to the pinion and gear, respectively. In the above equations, x(t) represents the difference between
DTE and the unloaded STE. This model relies on a gear load distribution model [16] for computations of k(t)
and e(t) under quasi-static conditions. This load distribution model is designed to compute elastic
deformations of gear tooth surfaces using the tooth compliance and the initial separations under no load.
Conditions for compatibility and equilibrium are used to predict the load distribution, tooth forces and e(t).
This model computes k(t) and e(t) very fast. The involute profile modifications or wear profiles are represented
in the dynamic model by e(t) that corresponds to STE under unloaded conditions. Therefore, a quasi-static
load distribution analysis is performed under unloaded conditions for several discrete positions over one mesh
cycle to determine e(t). Similarly, the mesh stiffness function k(t) is obtained from the same quasi-static load
distribution model, now under operating load conditions. The nonlinear differential equation of motion (3) is
solved numerically.

Tamminana et al. [14] compared the predictions of the discrete and deformable-body dynamic models with
experiments to demonstrate its accuracy. As an example, Fig. 2 compares root-mean-square (rms) DTE values
predicted by the two dynamic models to the measured data for a unity-ratio spur gear pair operated at a
150mm center distance [4]. Gears forming this pair have 50 teeth, 3mm module, 201 pressure angle, and an
involute contact ratio of ICR ¼ 1.8. Experiment and simulations were performed under both speed-up and
speed-down conditions within a range of 500–4000 rpm (gear mesh frequency 415–3330Hz) so that jump-up
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Fig. 2. Comparison of DTE predictions of the dynamic models to measurements at 340Nm (from Ref. [14]). (’) Experiment,
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and jump-down-type nonlinear phenomena due to tooth separation can be captured. Predictions of the
deformable-body model match the measured data very well in terms of both overall amplitudes and the shape
of the forced response. The measured primary resonance near 3000Hz as well as the first two super-harmonic
resonances near 1500 and 1000Hz are predicted accurately by the deformable-body model. The amplitudes of
the DTE are also predicted accurately in both resonance and off-resonance regions. In addition, the measured
nonlinear behavior characterized by a frequency range of dual stable motions (a lower branch no-contact-loss
motion and an upper branch tooth separation motion) bounded by jump-up and jump-down discontinuities
also match well with the experimental data. The same conclusions can also be reached for the discrete model
with the exception that the DTE predictions of this model along the upper branch tooth separation motions
are somewhat larger than the experimental data. This slight discrepancy can be tolerated for many engineering
applications since it is much faster. Comparisons to experimental data from other gear pairs having different
parameters were also made in Ref. [14] with the same level of agreement to conclude that both models are
indeed capable of predicting the dynamic response of a gear pair accurately.

3. Quasi-static gear wear model

The wear model used in this study is based on the model proposed by Bajpai et al. [12] to study the wear of
gears under quasi-static conditions. A brief description of the wear model will be offered here as a more detailed
presentation of the model and its validation can be found in Ref. [12]. The gear wear model employs Archard’s
wear equation that can be expressed for a local point on one of the contacting surfaces in relative sliding as

h ¼

Z
kPds. (4)

Here k is a dimensional wear coefficient, P is the contact pressure amplitude, and s is the sliding distance
between this local point and the mating point on the mating gear.

Computation of the wear depth h follows the methodology outlined in Fig. 3. The first step is to determine
the initial geometric descriptions of the gear tooth surfaces to serve as the initial state for the wear prediction.
The tooth surface modifications must be included in quantifying the initial contact of the gear surfaces.
Surface deviations from a perfect involute at a point ij on gears p and g, including surface modifications, are
defined as G

p
ij and G

g
ij , respectively. By selecting points ij at the nodes of a predetermined surface grid, a

discretized description of both contacting surfaces are obtained. The second step is the computation of the
contact pressure at each nodal point ij at different rotational positions of the gears in mesh. The geometric
data consisting of G‘

ij , ‘ ¼ p, g, are input into the same contact mechanics models [15,16] to predict the
instantaneous contact pressure distribution ðP‘

ijÞr at each rotational position rA[0, R]. Here, the total number
of rotational positions R and the increment of the rotation are such that the amount of gear rotation achieved
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Fig. 3. Methodology used for computation of gear surface wear [12].

H. Ding, A. Kahraman / Journal of Sound and Vibration 307 (2007) 662–679 667
covers a complete wear cycle from the position where the tooth of interest enters the mesh zone (r ¼ 0) to the
position where the tooth exits the mesh zone completely (r ¼ R).

Active tooth surfaces of both gears p and g are discretized by I+1 equally spaced lead lines along the profile
direction and J+1 equally spaced profile lines along the lead direction. Hence, the contact pressures at each
position r are calculated at the nodes ij of this surface grid on both gears (iA[0, I] and jA[0, J]) resulting in
(I+1)� (J+1) number of points per tooth to represent the contact surfaces. Considering the ith grid line of
the tooth on gear p in the profile direction at a radius R

p
i , the involute angle is Fp

i ¼ tan½cos�1ðR
p
b=R

p
i Þ� �

cos�1ðR
p
b=R

p
i Þ where R

p
b is the base circle radius, as illustrated in Fig. 4. At the first rotational position r ¼ 0,

the position vector of a nodal point at R
p
i and j ¼ 0 is defined as

ðX
p
i0Þr¼0 ¼

R
p
i sin Fp

i

R
p
i cos Fp

i

0

8><
>:

9>=
>;. (5)
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At the same radius, the position vector of a node ij at a distance zp along the gear face from the j ¼ 0 edge is
given at any position r as

ðX
p
ijÞr ¼ RrDyp ½Rjp

ij
ðX

p
ijÞr¼0 þ Tzp �. (6)

Here jp
ij ¼ zp tan cp

i

�
R

p
i , c

p
i is the helix angle at radius R

p
i , rDyp is the angular position of gear p measured

from r ¼ 0, and R and T are the rotation matrix and the translation vector, respectively.
The sliding distance ðs

p
ijÞr!rþ1 is defined as the distance by which a point represented by node ij on gear p

slides with respect to its corresponding point on its mating gear as they rotate from position r to position r+1.
As illustrated in Fig. 5(a), when the leading edge of the contact zone reaches a node ij of gear p at r ¼ m, node
ij meshes with node pq of gear g and experiences a non-zero pressure for the first time since the beginning of
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the loading cycle. Position vector ðX
p
ijÞr¼m of node ij at r ¼ m is given by Eq. (6) and since points ij and pq

overlap in space, ðXg
pqÞr¼m ¼ ðX

p
ijÞr¼m. When the gears are rotated by one incremental rotation to position to

r ¼ m+1 as shown in Fig. 5(b), ðX
p
ijÞr¼mþ1 is again defined by Eq. (6). Meanwhile, node pq on gear g no longer

overlaps with node ij on gear p as gear g rotates about its own center. The position vector of node pq is
obtained by first translating the coordinate frame from the center of gear p to the center of gear g, then
rotating it by Dyg, and finally translating it back to the center of gear p:

ðXg
pqÞr¼mþ1 ¼ RDygfðXg

pqÞr¼m þ TEg � TE . (7)

Here, Dyg
¼ �(Zp/Zg) Dyp, Zp and Zg are the number of teeth of gears p and g, respectively, and E is the

center distance. If node ij remains within the contact zone until position r ¼ t, the sliding distance that occurs
when gears rotate from any position r to r+1 can be given in general terms as

ðs
p
ijÞr!rþ1 ¼

ðXg
pqÞrþ1 � ðX

p
ijÞrþ1

��� ���� Pr
u¼m

ðs
p
ijÞðu�1Þ!u

����
����; mprpt;

0 else:

8<
: (8)

The sliding distance of the corresponding node pq on gear g, ðsg
pqÞr!rþ1, is also determined by using the same

procedure.
Given ðP‘

ijÞr and ðs‘ijÞr!rþ1 (‘ ¼ p, g), at every node point ij of both gears, iA[0, I] and jA[0, J], and every
rotational position rA[0, R], a discretized version of Eq. (4) can be used to calculate the wear occurred at node
ij as gears rotate from position r to r+1:

ðdh‘ijÞr!rþ1 ¼
1
2
k‘ðs‘ijÞr!rþ1½ðP

‘
ijÞr þ ðP

‘
ijÞrþ1�. (9)

Thus, the total wear depth reached at the same node after one complete wear cycle is

Dh‘ij ¼
XR�1
r¼0

ðdh‘ijÞr!rþ1. (10)

Eqs. (9)–(10) are applied continuously Ck times until the maximum wear depth accumulated at any node of
either one of the contacting surfaces after the kth pressure update equals ek. Then, the wear amount at nodes ij

of gears p and g accumulated after the kth pressure update can be written as

ðhk
ijÞ
‘
¼
XCk

c¼1

ðDhk
ijÞ
‘
c. (11)

After carrying out the iterations until Kth geometry update (k ¼ 0, 1, 2,y, K) when a point on either gear
surface reaches the maximum allowable wear value of etot, the cumulative wear depth distribution at node ij

just before the Kth update is given by

h‘ij ¼
XK

k¼1

ðhk
ijÞ
‘. (12)

Finally, the total number of wear cycles becomes Ctot ¼
PK

k¼1C
k.

4. Dynamic wear model

With the dynamic gear pair models and the quasi-static wear models available, the next step is to combine
them to study the interaction between dynamic response and surface wear. There are three essential additions
that must be made for this purpose: (i) the dynamic models must have the capability to consider complex
surface deviations due to wear, (ii) the deformable-body contact model that provides tooth forces and contact
pressures to the wear model must be a dynamic one, and (iii) the wear model must account for the changes in
the wear coefficient due to the changes in lubricant film that is speed dependent. The first two items have been
taken care of in the previous sections. The deformable-body dynamic model presented in Section 2 has the
ability to include any regular or irregular profile deviations such as a wear profile. The discrete-parameter
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dynamic model can do the same since its displacement excitations come from the load distribution model. In
addition, as illustrated in Section 3, the deformable-body contact model can simulate the dynamic conditions.

Approximate methods are available for accounting for the influence of lubrication conditions at the gear
mesh contact on the wear coefficient k. In most gear applications, geometric, kinematic, lubricant, and surface
texture conditions are such that an elastohydrodynamic lubrication (EHL) regime exists. In addition, the fluid
film thickness values are comparable to the asperity heights such that actual metal-to-metal contacts are
common. In this case, a portion of the contact load is carried by asperities while the rest is supported by the
fluid film itself, and the EHL regime is considered as ‘‘mixed’’ or ‘‘partial’’. As the thickness of the fluid film is
dependent on speed, one would expect k to change with speed as well. Priest and Taylor [17] proposed an
approximate wear coefficient model to account for the effect of film thickness on wear profiles of piston rings.
They expressed the wear coefficient k as

k ¼

k0; lo1
2
;

2
7
k0ð4� lÞ; 1

2
olo4;

0; l44:

8><
>: (13)

Here, l is the so-called lambda ratio defined as the ratio of the minimum film thickness hmin to the
composite surface roughness Rq ¼ ½R

2
qp þ R2

qg�
1=2 where Rqp and Rqg are the root-mean-square surface
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roughness values of gears p and g at a contact point in the direction of the involute profile. Eq. (13) assumes
that the wear coefficient is equal to k0 for lo1

2 that corresponds to the values observed at relatively low speeds
such as the ones measured by Bajpai et al. [12]. It also assumes that k ¼ 0 for l44, i.e. no wear will occur if
hmin is at least four times more than Rq. In the transition region within 1

2
olo4, k reduces linearly from k0 to

zero. Dowson [18] defined hmin of an elliptical contact of two smooth surfaces as

hmin

R
¼ 3:63U0:68G0:49W�0:073ð1� e�0:68kÞ, (14)

where k is an ellipticity parameter that can be assumed as infinity for any spur gear contact. The dimensionless
speed, load and material parameters are defined as U ¼ Z0u=ðE0RÞ, W ¼ ðL=bÞ=ðE0R2Þ, and G ¼ aE0 where
0
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L/b is the load per length, u is the average tangential velocity, Z0 is absolute viscosity at reference ambient
pressure, and a is the pressure-viscosity coefficient of the lubricant. Here R and E0 are the equivalent radius
and elasticity of the gear pair defined respectively as

1

R
¼

1

Rp

þ
1

Rg

;
1

E0
¼

1

2

1� n2p
Ep

þ
1� n2g

Eg

 !
, (15a,b)

where Ri is the radius of curvature of gear i, and Ei and ni are the modulus of elasticity and the Poisson’s ratio
for the material of gear i. With these relationships, hmin along the gear tooth surfaces are predicted to
determine the wear coefficients, which are updated whenever wear threshold value ek is reached to update the
gear geometry.

After each geometry update, the gear surface with wear is fed into the dynamic models to compute the
dynamic contact pressure distribution, which is input to the wear model to predict the wear depth distributions
under dynamic conditions as a function of loading cycles. The iterative procedure shown in Fig. 3 is applied
until the total cycles of interest or the maximum allowable wear depth value are reached.

5. Results and discussion

In order to demonstrate the dynamic wear model proposed in this study, an example spur gear pair whose
dynamic response is shown in Fig. 2 is considered. Wear simulations are performed at three representative
operating speeds: (1) at fmesh ¼ 1540Hz (1850 rpm) slightly above the first super-harmonic resonance peak,
(2) at fmesh ¼ 2700Hz (3250 rpm) when the gear pair is operated on the lower branch just before the jump-up
frequency near the primary resonance peak, and (3) again at fmesh ¼ 2700Hz when the gear pair is operated on
the upper branch. These three representative operating conditions are marked in Fig. 2.

A typical automotive transmission fluid operating at 100 1C with Z0 ¼ 6.5� 10�3 Pa�1, a ¼ 1.2773
� 10�8 Pa�1 is used in the simulations. A constant surface roughness value of Rqi ¼ 0.2 mm is considered
for each gear for the determination of lambda ratio l. A wear threshold value of ek ¼ 1.5 mm for each
geometry update is used. As both dynamic models resulted in very similar wear distributions, only the results
from the discrete model are shown in the following sections. In these simulations, k0 ¼ 2.5� 10�18m2/N is
used in line with Ref. [12].
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5.1. Effect of wear on the dynamic response

Before the impact of wear on dynamic behavior can be demonstrated, the dynamic behavior must be
established for the baseline case of no surface wear. The predicted total gear mesh force F(m) and individual
tooth forces F(t) at the operating conditions marked in Fig. 2 as points 1–3 are shown in Fig. 6 for the gear pair
having no wear. Since the involute contact ratio of this example gear pair is 1.8, each tooth pair remains in
contact for nearly 1.8 mesh periods, and for nearly 80 percent of the time, there are two tooth pairs in contact.
The mesh force F(m) is computed by summing up all of the tooth forces F(t) at any given instant of time. F(m)

and F(t) shown Fig. 6(a) at the operating point 1 (1540Hz) has two cycles per mesh period since the rotational
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speed is near the resonance peak caused by the first harmonic component of the excitations. Here, F(m)

becomes almost zero at two positions in each mesh period suggesting that the system is at the threshold of
tooth separations. The same is observed in time histories of F(t) as well. Figs. 6(b) and (c) illustrate F(m) and F(t)

at the lower and upper branches of the steady-state motions at 2700Hz (operating points 2 and 3 in Fig. 2),
respectively. In Fig. 6(b), F(m) for the lower branch motion always has a non-zero value while F(m) becomes
zero for about 40 percent of the time in Fig. 6(c) for the upper branch solution. This is directly due to the
nonlinear behavior caused by contact losses (tooth separations).

The influence of wear accumulated at 1540Hz (operating point 1 in Fig. 2 at 1850 rpm) on the dynamic
response is illustrated in Figs. 7 and 8. In Fig. 7, peak-to-peak F(m) amplitudes reduce significantly with wear,
reaching their minimum at 30 million cycles, beyond which an increase of F(m) amplitudes is predicted. The
steady-state rms DTE amplitudes of the same gear pairs operated at 1850 rpm at different numbers of wear
cycles are compared in Fig. 8. It is observed that the amplitude of the first super-harmonic resonance peak at
1500Hz is reduced significantly with wear cycles before it is fully eliminated with the accumulation of surface
wear after 60 million cycles. Very similar to Fig. 6, the gear tooth surfaces wear in a certain shape to eliminate
the first harmonic component of the response, resulting in no resonance peak at this speed. While the gears
attempt to ‘‘correct’’ themselves at this particular frequency of 1540Hz, the other resonance peaks are also
altered. The second super-harmonic resonance peak is increased significantly due to wear accumulated by
operating the gears near the first super-harmonic resonance peak. This peak at 1000Hz becomes significantly
larger in Fig. 8(c–d) with apparent jump discontinuities. Meanwhile, the amplitude of the primary resonance
peak at 3000Hz is also reduced significantly with the wear cycles accumulated at 1540Hz. After 30 million
wear cycles, the resonance peak becomes linear with rather small rms DTE amplitudes. Additional wear cycles
beyond this point bring back the jump discontinuities with much larger upper branch DTE amplitudes than
those shown in Fig. 2.

The next operating speed of 3250 rpm (2700Hz) in Fig. 2 is considered to accumulate wear on both lower
and upper branches of the steady-state response near the primary resonance peak of the same gear pair. First,
the variation of the dynamic forces and the DTE forced response with wear accumulated on the lower branch
is presented in Figs. 9 and 10. Here, wear accumulated at this speed on the lower branch after 10 million cycles
is sufficient to completely eliminate any tooth separations and softening-type nonlinear behavior observed in
Fig. 2 at the primary resonance peak. Peak-to-peak mesh force values reduce drastically after 10 million cycles
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as well. Additional wear cycles at the same condition increase the nonlinear behavior significantly. There is no
lower branch motion at 2700Hz after 60 million cycles. As a result, the F(m) time history shown in Fig. 9(d)
exhibits severe tooth separations during about 40 percent of the mesh cycle. This can be considered as a very
significant (both qualitative and quantitative) change induced solely by wear on the dynamic response of the
gear pair. The same high level of sensitivity to wear is also obvious in Figs. 11 and 12, which show
the influence of the wear accumulation at the upper branch (2700Hz) on dynamic response. In Fig. 11(a), the
tooth separations observed in the F(m) time history shown in Fig. 6(d) for the unworn gear pair are eliminated
immediately after only 2 million wear cycles at 2700Hz on the upper branch. In Fig. 11(b and c), the peak-to-
peak F(m) increases steadily with wear cycles and the tooth separations are reintroduced after 60 million wear
cycles as shown in Fig. 11(d). The DTE forced responses shown in Fig. 12 at different wear cycles further
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confirm this transformation of the nonlinear motions to linear ones and then again to nonlinear ones near the
primary resonance peak.

The computational time required for a complete wear analysis by using the discrete dynamic model is
reasonable. For instance a complete dynamic wear analysis at a given speed with 15 geometry updates and
given damping values required about 10min of CPU time on a 3.0GHz PC. On the other end, the deformable-
body model required nearly 25 times more time for the same analysis.

5.2. Effect of dynamic response on wear

The quasi-static wear profiles of the driving and driven gears are shown in Fig. 13(a) after different wear
cycles to establish a baseline with no dynamic effects. Since spur gears with no lead modifications are used,
only the wear profiles in the mid-plane of the gears after different wear cycles are shown here while the quasi-
static analysis is indeed three-dimensional. It is evident from Fig. 13(a) that the maximum wear occurs in the
dedendum region of the tooth while wear along the pitch line at a roll angle of 20.91 is nearly zero since there is
theoretically no relative sliding to cause any wear. Driving and driven gears exhibit similar wear profiles since
both gears are identical.

Dynamic wear profiles for the gear pair run at the same three operating conditions marked at Fig. 2 are
illustrated in Fig. 13(b–d). First of all, dynamic wear profiles are clearly different from the static ones in both
amplitudes and overall wear profile shapes. In Fig. 13(b), the wear profiles accumulated at 1540Hz exhibit a
waviness in the profile direction as a direct result of the oscillation of F(m) shown in Fig. 6(a). It was noted in
Fig. 6(a) that the first harmonic component of the response is dominant since the operating speed is very near
to the first super-harmonic resonance frequency, resulting in two well-defined fluctuations per gear mesh
period. Since the example gear pair has a contact ratio of 1.8, indicating that each tooth remains loaded for 1.8
mesh cycles, it should then experience nearly (2)(1.8) ¼ 3.6 cycles of loading at this particular mesh frequency.
As a direct result of this, the wear profiles shown in Fig. 13(b) for both the pinion and gear exhibit a waviness
that has formed by 3.6 periods.

In Fig. 13(c and d), the wear profiles of the gear pairs operated on the lower and upper branches of the
steady-state response at 2700Hz are illustrated. The wear profiles shown in Fig. 13(c) for the lower branch
motions is quite similar to those of the lower frequencies, until the wear amounts become large enough to
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cause tooth separations. As shown in Fig. 9 earlier, this gear pair operated at this mesh frequency accumulates
enough wear after 60 million cycles for separations to occur. In Fig. 9(d) after 60 million cycles, F(m) becomes
zero within the roll angle ranges of 13.5–18.51 and 22.5–25.51 of the pinion. Therefore, the contact areas of
tooth surfaces falling into these ranges do not accumulate additional wear after 60 million cycles. That is why
the surface profiles at 60 and 80 million wear cycles are identical within these roll angle ranges. On the other
hand, the upper branch motions of the gear pair having no wear exhibits tooth separations at 2700Hz as
shown in Fig. 6(d). As a result of this, the initial wear profiles shown in Fig. 13(d) have zero wear within the
pinion roll angle ranges of 18–20.91 and 25–271, corresponding to the mesh positions having tooth separation.
With increased wear cycles, these bands of no wear are eliminated. For instance, wear is observed at every roll
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angle after 30 million wear cycles. This is because the nonlinear behavior (tooth separations) is eliminated due
to wear, as illustrated earlier in Fig. 11. Also in agreement with Fig. 11(d), tooth separations are reintroduced
after 60 million wear cycles, resulting in a contact loss within the pinion roll angle ranges of 14–181 and
22.5–251. Therefore, no additional wear is predicted within these ranges beyond 60 million wear cycles.

Wear behavior presented in Fig. 13 shows that the maximum wear amplitudes also change with speed, in
addition to shapes of the wear profiles. In Fig. 13(b–d), the maximum wear depth value is slightly larger
1540Hz, but somewhat lower at 2700Hz, suggesting that there is not a simple trend here. The operating speed
influences the dynamic mesh and tooth force amplitudes. For the two example mesh frequencies considered
here, increasing speed results in increased mesh forces. This should increase the amount of wear. On the other
hand, the wear coefficient, defined by Eq. (13), is dependent on l ¼ hmin/Rq. At a given surface roughness
value Rq, hmin increases with speed parameter U ¼ Z0u=ðE

0RÞ, and reduces with the load parameter
W ¼ ðL=bÞ=ðE0R2Þ. Since hmin is proportional to U0.68 and W�0.073, the influence of speed on hmin is more
pronounced. As a result, l increases with speed, causing the wear coefficient k to reduce according to Eq. (13).
In addition, the tooth separations near the resonance peaks also slow the accumulation of wear. These effects
are all apparent in Figs. 7–13.

One potential concern with the model used is that it assumes constant backlash throughout the wear
simulation. Even if actual backlash values might change with wear, these changes are at least an order of
magnitude smaller than the nominal backlash values. Therefore, assumption of constant backlash should be
reasonable. On the other hand, it is also assumed that the gear mesh damping value remains constant during
the same wear process as well. This might be a more critical assumption that we intend to verify through
controlled dynamic wear experiments.

6. Conclusions

Two different dynamic models and a surface wear model are combined here to study the interaction between
surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of
worn surface profiles on dynamic forces and the motion transmission error as well as the influence of dynamic
tooth forces on wear profiles. Simulation results indicate that there is a two-way interaction between wear and
dynamic behavior in geared systems. Surface wear is shown to influence vibration amplitudes and the forced
frequency response both quantitatively and qualitatively. In its initial stages, wear is shown to reduce the
nonlinear forced response curves having softening-type jump discontinuities into linear ones by eliminating
tooth separations. Such nonlinear behavior is predicted to reappear as wear amounts become more significant.
Furthermore, the wear process influences each harmonic component of the response in different levels. When
operated near a resonance peak, accumulating surface wear is shown to diminish this particular resonance
peak. Likewise, both wear amplitudes and wear profile shapes are influenced significantly by the dynamic
operating conditions. Smaller wear depths are predicted at higher operating speeds than those at lower speeds
mainly because hmin is increased (and hence k is reduced) with speed.

Our ongoing work focuses on the effect of surface roughness variations on dynamic wear behavior and on an
expansion of the dynamic wear model to helical gears and multi-mesh gear trains such as planetary gear sets. An
experimental study is also in progress for validation of the dynamic wear model. We are pursuing this validation
study in two ways. One focuses on the effect of dynamics on wear. For this, we have procured high-accuracy gear
specimens having varying surface roughness levels. We are currently operating them under various levels of load
and different types of lubricants (at various temperature levels) using FZG-type gear durability test machines and
monitoring the resultant wear profiles through CMM inspections. Another activity focuses on the measurement
of dynamic behavior of gears with wear using the same setup used in Refs. [4,7,8].
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